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Characteristic versus critical features of earthquakes are studied on the basis of the Olami-Feder-Christensen
model. It is found that the local recurrence-time distribution exhibits a sharp �-function-like peak correspond-
ing to rhythmic recurrence of events with a fixed “period” uniquely determined by the transmission parameter
of the model, together with a power-law-like tail corresponding to scale-free recurrence of events. The model
exhibits phenomena closely resembling the asperity known in seismology.
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Earthquakes possess two apparently contrasting features.
In one, earthquakes exhibit critical features. Earthquake oc-
currence is often characterized by power laws—e.g., the
Gutenberg-Richter �GR� law or the Omori law. As is well
known, phenomena described by power laws are scale in-
variant without any characteristic energy or time scale. In the
other, earthquakes are sometimes regarded to possess char-
acteristic features, with a characteristic energy or time scale.
The relation between these apparently contrasting views of
earthquakes—i.e., critical versus characteristic—still remains
to be understood �1,2�.

Modeling earthquakes and elucidating their statistical
properties have been a fruitful strategy in earthquake studies.
One of the standard models of earthquakes might be the so-
called spring-block or Burridge-Knopoff �BK� model, in
which the earthquake fault is modeled as an assembly of
blocks mutually connected via elastic springs which are
slowly driven by external force �3,4�. Olami, Feder, and
Christensen �OFC� introduced a further simplified model,
called the OFC model �5�, mimicking the BK model. It is a
two-dimensional lattice model where the rupture propagates
from lattice site to its nearest-neighboring sites in a noncon-
servative manner, often causing multisite “avalanches”. Ex-
tensive numerical studies have revealed that the OFC model
exhibits apparently critical properties such as the GR law
�5–7� or the Omori law �8�, although there still remains con-
troversy concerning whether the model is strictly critical �7�
or only approximately so �9–11�. In this way, the OFC model
has been regarded as a typical nonconservative model exhib-
iting self-organized criticality �SOC�.

In the OFC model, the “stress” variable f i �f i�0� is as-
signed to each site on a square lattice with L�L sites. Ini-
tially, a random value in the interval �0,1� is assigned to each
f i, while f i is increased with a constant rate uniformly over
the lattice until, at a certain site i, the f i value reaches a
threshold, fc=1. Then, the site i “topples” and a fraction of
stress �f i �0���0.25� is transmitted to its four nearest
neighbors, while f i itself is reset to zero. If the stress of some
of the neighboring sites j exceeds the threshold—i.e.,
f j � fc=1—the site j also topples, distributing a fraction of
stress �f j to its four nearest neighbors. Such a sequence of
topplings continues until the stress of all sites on the lattice
becomes smaller than the threshold fc. A sequence of top-
pling events, which is assumed to occur instantaneously, cor-
responds to one seismic event or an avalanche. After an ava-

lanche, the system goes into an interseismic period where
uniform loading of f is resumed, until some of the sites reach
the threshold and the next avalanche starts.

The transmission parameter � measures the extent of non-
conservation of the model. The system is conservative for
�=0.25 and is nonconservative for ��0.25. A unit of time is
taken to be the time required to load f from zero to unity.

In the OFC model, boundary conditions play a crucial
role. For example, the SOC state is realized under open
boundary conditions, but is not realized under periodic
boundary conditions. Middleton and Tang �MT� observed
that the model under open boundary conditions went into a
special transient state where events of size 1 �single-site
events� repeated periodically with period 1−4� �12�. These
single-site events occur in turn in a spatially random manner,
but after time 1−4�, the same site topples repeatedly. Al-
though such a periodic state consisting of single-site events
is a steady state under periodic boundary conditions, it is not
a steady state under open boundary conditions because of the
boundary. Indeed, clusters are formed near the boundary,
within which the stress values are more or less uniform, and
gradually invade the interior, destroying the periodic state.
Eventually, such clusters span the entire lattice, giving rise to
an SOC-like steady state. MT pointed out that such clusters
might be formed via synchronization between the interior
site and the boundary site, the latter having a slower effective
loading rate due to the boundary.

Large-scale synchronization occurring in the steady state
of the OFC model was further investigated by Bottani and
Delamotte, who observed partial and unstable synchroniza-
tion of clusters of all length scales; i.e., synchronized clusters
of various sizes exist in the steady state with a large, but
finite lifetime �13�. The true nature of spatiotemporal corre-
lations of the OFC model, including its criticality, synchro-
nization, and possible periodicity, however, deserves further
clarification.

In this situation, we perform in the present paper a quan-
titative study of spatiotemporal correlations of the OFC
model by measuring the local recurrence-time �waiting-time�
distribution of avalanches �14,15�. The global recurrence-
time distribution of the OFC model was studied, e.g., in Ref.
�8�, which exhibited a monotonic behavior without any peri-
odic feature. In the case of the globally defined recurrence
time, the next avalanche to measure recurrence may occur
anywhere on the entire lattice. In view of the spatial corre-
lations developed in the steady state of the OFC model and
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also in view of the ordinary sense of earthquake recurrence
in real life, it might be natural to introduce the recurrence
time T and its distribution function P�T� locally. Thus, one
may define the local recurrence time as the time passed until
the next avalanche occurs in a vicinity of the preceding
avalanche—say, within distance r �in units of lattice spacing�
of the triggering site �epicenter� of the preceding event.

We compute the local recurrence-time distribution P�T ,r�
in the steady state for several values of �, with varying the
range parameter r. In our simulations, we adopt open bound-
ary conditions and employ the “pseudosequential” algorithm
of Ref. �16�. The lattice size is L=256, while lattices
L=128 and 512 are also studied to check the possible
system-size dependence. Discarding initial 2�109 ava-
lanches to reach the steady state, measurements are made
over the subsequent 108 avalanches.

The computed P�T ,r� is shown in Fig. 1�a� for the case of
�=0.2 on a log-log plot, with varying the parameter r in the
range 5�r�80. We are concerned here with relatively large
events, considering the local recurrence time for avalanches
whose size is greater than 100—i.e., s�sc=100. The size of
an avalanche is measured by the total number of topplings
involved in the event. �Note that the same site may topple
more than once in a single avalanche.� When the range pa-
rameter r is large enough, the local recurrence-time distribu-
tion should reduce to the global recurrence-time distribution.
Indeed, P�T ,r� for r=80 exhibits a monotonic behavior simi-
lar to that of the global recurrence-time distribution studied
earlier �8�. For smaller values of r, however, significantly
different behaviors arise: P�T ,r� develops a sharp
�-function-like peak at T=T*=0.2, which tends to grow as r
gets smaller. This observation suggests that many, though not
all, events tend to repeat with a fixed time interval T=T*.
Interestingly, the observed “period” T*=0.2 for �=0.2 is
precisely equal to 1−4� within our binning precision of
10−4. The r dependence of the peak height is shown in the
inset of Fig. 1�a�. With increasing r, the peak height drops
off exponentially with r. For smaller r, P�T ,r� exhibits sub-
peaks at multiples of T*=0.2. This is due to the fact that,
when r is small and the neighborhood range is taken as nar-
row, the “next” event occurring at T=T* after the first one
might occur slightly outside this neighborhood and the
“second-next” event occurring T=2T* after the first one
counted as the next event in measuring the local recurrence
time.

It also turns out that, in the shorter- and longer-time re-
gimes T�T* and T	T*, P�T ,r� exhibits behaviors close to
power laws. In the short-time regime �T�T*�, the exponent
describing the power law is almost r independent and is
equal to �0.82, whereas in the long-time regime �T	T*�, it
is r dependent and is �1.4 for r=5, tending to increase with
increasing r. We have also checked the possible system-size
dependence of the result by studying lattices L=128 and 512
to observe that the result does not depend on L, at least in the
time range studied. In this way, the characteristic or periodic
feature—i.e., a sharp peak in P�T ,r� at T=T*—and the criti-
cal feature—i.e., power-law-like behaviors in P�T ,r� at
T�T* and at T	T*—coexist in the local recurrence-time
distribution.

In order to see how the observed behavior of P�T ,r� de-
pends on the parameter �, we also compute P�T ,r� for other
values of �, �=0.18 and 0.22, and the results are shown in
Fig. 1�b� for the case of r=10. As can be seen from the
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FIG. 1. �Color online� Log-log plots of the local recurrence-time
distributions of large avalanches of their size s�sc=100 �a� with
varying the range parameter r for a fixed �=0.2, �b� with varying
the transmission parameter � for a fixed r=10, and �c� for the
interior events whose triggering sites lie in the middle part of the
lattice of its size 2

5L�
2
5L and for the boundary events whose trig-

gering sites lie in the boundary region of the width 1
5L, the param-

eters being �=0.2 and r=10. The lattice size is L=256. In the inset
of �a�, the r dependence of the peak height is shown, where the
curve represents an exponential fit proportional to exp�−r /10�.

KOTANI, YOSHINO, AND KAWAMURA PHYSICAL REVIEW E 77, 010102�R� �2008�

RAPID COMMUNICATIONS

010102-2



figure, all qualitative features of P�T ,r� remain the same in
the range of � studied. In particular, the location of the sharp
peak turns out to be precisely given by T*���=1−4� within
our binning precision of 10−4. The power-law-like feature is
also observed in the short- and long-time regimes for both
cases of �=0.18 and 0.22. The power-law behavior is par-
ticularly eminent in the long-time regime, and the exponent
there turns out to be almost � independent �though r depen-
dent�.

So far, we have considered relatively large avalanches of
sc=100. However, qualitatively similar behaviors are ob-
served in P�T ,r� even when the event-size threshold sc is
varied. In particular, even if one sets sc=1, a sharp peak is
still discernible at T=T*, though in a less pronounced man-
ner.

In order to get further insight into the periodicity versus
criticality issue, we next concentrate on the periodic events
contributing to a sharp peak of P�T ,r� �“peak events”� and
investigate the size distribution of these periodic events.
More specifically, we record for the �=0.2 case the size
distribution of avalanches of arbitrary size �sc=1� which oc-
cur T=T*=0.2 after the preceding avalanche of arbitrary size
in its vicinity of r=10. As shown in Fig. 2, the size distribu-
tion of these peak events exhibits near-critical behavior, not
much different from the size distribution obtained for all
events without any constraint on its time and position. It
means that, even if one looks at peak events occurring with a
fixed “period” T=T*, its size distribution exhibits a power-
law-like behavior. Thus, the characteristic feature �in time�
and critical feature �in size� also coexist in the OFC model.

The peak position of P�T ,r� is precisely given by
T*���=1−4� irrespective of the values of the range param-
eter r, the size threshold sc, and the system size L. This
hidden “period” in the steady state coincides with the period
of single-site events realized at the transient stage. Of course,
periodic recurrence of single-site events is peculiar only to
the transient stage and goes away in the steady state. Further-
more, the periodic single-site events never yield a peak in

P�T ,r�, since successive single-site events do not accompany
spatial correlations. Hence, the rhythmic behavior we have
observed in P�T ,r� in the steady state clearly differs in char-
acter from the periodic behavior realized at the transient
stage. Yet it is natural to suppose that the hidden “period”
T*=1−4� in the steady state has been inherited from the
period of single-site events at the transient stage via the for-
mation and invasion process of synchronized clusters. In-
deed, we have confirmed such a dynamical generation of the
“period” T*���=1−4� by monitoring P�T ,r� both in the in-
terior and at the boundary during a transition from the tran-
sient stage to the stationary stage.

It was argued in Refs. �12,13� that synchronization might
occur between the interior site, which has a natural period
1−4�, and the boundary site, which has a natural period
1−3�. In the simplest situation, direct synchronization be-
tween two such oscillators yields a period corresponding to
the slower one—i.e., T=1−3�. In contrast to this expecta-
tion, the peak in P�T ,r� turns out to be located precisely at
T=1−4�=T*���. In Fig. 1�c�, we show P�T ,r� in the steady
state for the case of �=0.2, each measured in the interior and
in the boundary of the lattice: In the former, the triggering
sites of the two successive avalanches both lie in the inner
region of size 2

5L�
2
5L, while in the latter, the triggering sites

of the two successive avalanches both lie in the boundary
region of the width 1

5L. As can clearly be seen from the
figure, the peak is again located precisely at T=0.2=T* for
both the boundary and inner regions. As shown in the inset,
the sharp peak at T=T* is actually not infinitely sharp, with
certain finite width. However, the peak itself is always lo-
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FIG. 2. �Color online� Size distribution of “periodic events”—
i.e., events of arbitrary size which occur T=T*=0.2 after the pre-
ceding event in its vicinity within distance r=10. The size distribu-
tion without any constraint is also shown for comparison. The
lattice size is L=256 and the transmission parameter is �=0.2.

FIG. 3. �Color online� Snapshots of the stress distribution for the
case of �=0.2 �a� immediately before a large event at time t= t0, �b�
immediately after this event, �c� immediately before the following
event which occurs at time t= t0+T* �T*=0.2�, and �d� immediately
after this second event. Two events are of size s=3512 and
s=3525 on a L=256 lattice. Only a part of the lattice is shown in
the figure.
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cated at T=T*. The detailed mechanism producing such a
sharp peak precisely located at T=T* remains to be under-
stood.

One may describe the observed phenomena in terms of
synchronized clusters. Synchronized clusters of various sizes
exist in the steady state of the OFC model and govern the
steady-state dynamics �12,13�. The sites belonging to the
same cluster often topple simultaneously in the same
avalanche—i.e., synchronization. Furthermore, we have ob-
served that some of these synchronized clusters rupture re-
peatedly with a fixed time interval T*=1−4�. Such periodic
or rhythmic rupture of a given cluster, however, does not
repeat permanently. Indeed, many clusters are left out of the
rhythmic recurrence and rupture more critically with widely
distributed recurrence time, yielding the observed power-
law-like part of P�T ,r�.

In the upper panel of Fig. 3, we show for the case of
�=0.2 typical snapshots of the stress distribution immedi-
ately before and after a large event which occur at time
t= t0. A discontinuous drop of the stress associated with a
rupture of a synchronized cluster is discernible. Then, at time
t= t0+T*, the same cluster �except for a minor difference�
ruptures again. In the lower panel of Fig. 3, we show snap-
shots of the stress distribution immediately before and after
this subsequent avalanche occurring at t= t0+T*. In this par-
ticular example, a rhythmic rupture of essentially the same
cluster has repeated more than ten times.

Finally, we note that the phenomena observed here closely
resemble those of the “asperity” familiar in seismology �1�,
in the sense that almost the same spatial region ruptures re-

peatedly with some period. Although the origin of the asper-
ity is usually ascribed to possible inhomogeneity of the ma-
terial property of the crust or of the external conditions of
that particular region, we stress here that, in the present OFC
model, there is no buit-in inhomogeneity in the model pa-
rameters or in the external conditions. The “asperity” in the
OFC model has been self-generated from the spatially uni-
form evolution rule and model parameter. As mentioned, the
asperity in the OFC model is not a permanent one: In long
terms, its position and shape change. After all, the model is
uniform. Nevertheless, recovery of spatial uniformity often
takes a long time and the asperity exists stably over many
earthquake recurrences. Although one has to be careful in
immediately applying the present result for the OFC model
to real earthquakes, it might be instructive to recognize that
the observation of asperitylike earthquake recurrence does
not immediately mean that the asperity region possesses dif-
ferent material properties or different external conditions
from other regions.

In summary, we have studied spatiotemporal correlations
of the OFC model and found that its local recurrence-time
distribution exhibits a sharp peak at a fixed time T*���=1
−4� irrespective of the values of the range parameter, the
event-size threshold, and the lattice size, together with
power-law-like behaviors at short- and long-time regimes.
The size distribution of events repeating with a characteristic
time interval T*���=1−4�, however, exhibits a power-law-
like behavior. Hence, the periodic or characteristic feature
and the critical feature coexist in the OFC model in an in-
triguing manner.
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